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SHEAR-FLEXIBLE FINITE-ELEMENT MODELS OF LAMINATED
COMPOSITE PLATES AND SHELLS

Ahmed K. Noor* and Michael D. Mathers*
Langley Research Center

SUMMARY

Several finite-element models are applied to the linear static, stability, and vibration analy-
sis of laminated composite plates and shells. The study is based on linear shallow-shell theory,
with the effects of shear deformation, anisotropic material behavior, and bending-extensional
coupling included. Both stiffness (displacement) and mixed finite-element models are considered.
Discussion is focused on the effects of shear deformation and anisotropic material behavior on
the accuracy and convergence of different finite-element models. Numerical studies are pre-
sented which show the effects of (a) increasing the order of the approximating polynomials,

(b) adding internal degrees of freedom, and (c) using derivatives of generalized displacements

as nodal parameters.

INTRODUCTION

Although the finite-element analysis of isotropic plates and shells has received considerable
attention in the literature, investigations of laminated composite plates and shells are rather
limited in extent. The reliable prediction of the response characteristics of high-modulus
fibrous composite plates and shells often requires inclusion of the transverse shear effects in
their mathematical models. This fact has been amply documented for linear static, stability,
and dynamic problems. (See, for example, refs. 1 to 5.)

At present there are three approaches for developing plate and shell finite-element models
which account for shear deformation. The first approach is based on the use of three-
dimensional isoparametric solid elements which automatically include the shear-distortion mecha-
nism (refs. 6 and 7). The second approach employs two-dimensional elements used with inde-
pendent shape (or interpolation) functions for displacements and rotations (refs. 8 and 9). The
third approach is based on the addition of effects of shear deformation to two-dimensional
classical platé or shell elements through the use of equilibrium equations (refs. 10 and 11).
Although it is desirable to have an element which gives accurate results regardless of how
important the shear deformation is, most of the existing elements do not satisfy this
requirement.

*The George Washington University, Joint Institute for Acoustics and Flight Sciences.




In the context of the stiffness method, the first approach has the major disadvantage
that it leads to a stiffness matrix which is (1) very large for laminated composites consisting
of many layers and (2) highly ill conditioned for thin plates or shells. If low-order interpola-
tion polynomials are used, the second approach leads to overly stiff elements for very thin
plates and shells. Although the aforementioned drawbacks have been recognized and some
improvements have been suggested, the difficulties have not been overcome. (See, e.g.,
refs. 12 to 17.) The range of validity of the third approach has not been explored. Since
the second approach provides flexibility and simplicity in fulfilling the interelement compati-
bility conditions and does not result in as large a stiffncss matrix as in the first approach, it
was adopted in the present study.

The first objective of this paper is to assess the relative merits of a number of displace-
ment and mixed shear-flexible finite elements when applied to the linear static, stability, and
vibration problems of laminated plates and shells. Emphasis is focused on the effects of shear
deformation and anisotropic material behavior on the accuracy and convergence of the different
models. The second objective is to study the effects of increasing the order of approximating
polynomials, adding internal degrees of freedom, and using derivatives of generalized displace-
ments as nodal parameters on the accuracy and rate of convergence of the different models.
To the authors’ knowledge no publication exists in which the aforementioned effects are
studied in any detail.

The analytical formulation is based on a form of the shallow-shell theory modified to
include the effects of shear deformation and rotary inertia. Indicial notation is used through-
out this paper since it is particularly useful in identifying the symmetries and, consequently,
simplifies the element development. Both triangular and quadrilateral elements are considered.
The elements are conforming and satisfy continuity requirements of the type CO (continuity

of the fundamental unknowns).

SYMBOLS AND NOTATION

A(xﬁfyp’AOB[B :
. shell compliance coefficients, inverse of shell stiffnesses

Baﬁvp’Gozﬁva

a side length of plate or shallow shell

Cozﬁ'y,o extensional stiffnesses of shelil

Ca353 transverse shear stiffnesses of shell

(k) (k) : _ .
CafypCa3p3 stiffness coefficients of kth layer of shell
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Co:Cu

Dogyp

Ep Et

Fagyp

GLr:OTT

m,mp>my

portions of shell boundary over which tractions and displacements are prescribed
bending stiffnesses of shell

elastic modulus of isotropic materials

error index (see eq. (36))

elastic moduli in direction of fibers and normal to it, respectively

stiffness interaction coefficients of shell

rise of shallow shells

shear moduli in plane of fibers and normal to it, respectively

nodal stress resultants

local thickness of shell

distances from reference (middle) surface to top and bottom surfaces of kth

layer, respectively
stiffness coefficients of shell element
geometric or initial stress stiffness coefficients of shell element
curvatures and twist of shell reference surface
direction cosines, cos(xa,xaf>
consistent mass coefficients of shell element
bending-moment stress resultants
number of shape functions

density parameters of shell




A

n

=

n
Py

PPy

UC
UO
Ush:Ua

(0%

shape or interpolation functions

extensional (in-plane) stress resultants

relative magnitudes of prestress components
total number of elements in X]- or Xz-direction
total number of nodes in finite-element model
unit outward normal to shell boundary
consistent nodal load coefficients

external load intensities in coordinate directions
intensity of uniform pressure loading

transverse shear stress resultants

radius of curvature

radial coordinate in circular cylindrical shell (see fig.

“generalized” stiffness coefficients of shell element

kinetic energy of shell

strain energy of shell

complementary energy of shell

strain energy duc to prestress

24)

measures of shear deformation and degree of anisotropy

displacement components in coordinate directions

work done by internal forces




77r,7?r+1

VLT

(1)

Easg3

work done by external forces

orthogonal curvilinear coordinate system (see fig. 1)

nodal values of x,

dimensionless eigenvalues of stiffness matrix

relative size of rth element in variable grid (eq. (37))
dummy coordinates of ends of rth element

fiber orientation, éngle between fiber direction and x|-axis
constant defined in appendix D

in-plane loading parameter

spherical segments; | pR2 / ET for circular cylinders)
Poisson’s ratio for isotropic materials

Poisson’s ratio measuring strain in T-direction (transverse) due to uniaxial normal
stress in L-direction (direction of fibers)

natural coordinates of node i

natural (dimensionless) coordinate system in element domain
functionals defined in equations (1) and (2)

density of plate or shell material

density of kth layer of laminated shell

uniform extensional stress in cylindrical shell

rotation components




nodal displacement parameters
J

Q shell domain

w circular frequency of vibration of shell
_ 0

O Xy

Range of indices:
Lowercase lLatin indices 1 to m

Uppercase Latin indices:
IJ 11to?s
IJ 1to38

Greek indices 1,2

Finite-element-model notation:

SOQN stiffness formulation, quadrilateral element, N shape functions per fundamental
unknown

STN stiffness formulation, triangular element, N shape functions per fundamental
unknown

MQN mixed formulation, quadrilateral element, N shape tunctions per fundamental
unknown

MTN mixed formulation, triangular element, N shape functions per fundamental unknown

SQH stiffness formulation, quadrilateral element, Hermitian interpolation functions

MATHEMATICAL FORMULATION

The analytical formulation is based on a form of the shallow-shell theory, with the
effects of shear deformation, anisotropic material behavior, rotary inertia, and bending-
extensional coupling included. (See appendix A and ref. 18.) For stability problems, the
prebuckling stresses are assumed to be given by the momentless (membrane) theory. Two

finite-element formulations are considered. In the first formulation (displacement model) the




fundamental unknowns consist of the displacement and rotation components of the shell
reference (middle) surface, and the stiffness matrix is obtained by using Hamilton’s principle
(which for static problems reduces to the principle of minimum potential energy). The funda-
mental unknowns in the second formulation (mixed model) consist of the 13 shell quantities:
generalized displacements u,, w, and ¢, and stress resultants Nqu: Mcxﬁ’ and Q. (See
fig. 1 for sign convention.) The generalized stiffness matrix is obtained by using a modified

form of the Hellinger-Reissner mixed variational principle.

The functionals used in the development of displacement and mixed models are given by

the following equations:
Displacement models

M{ugwdy) = U+ U° =W - T (1)
Mixed models

MR(NggMegQullgW9g) = V + U2 = US = W - W - T 2)

where

_1 2
U= f {Copyp Pavig 3y + 2kap Byu, W+ kaﬁkw(w)] + 2F gy Pt 949

+ kop 3,09W) * Dogyp 3085 349y + Cazpa(daw dgw + 200 dgw + 649p)) 40 )
0 = 2 f NOg B dgw dQ @
V= f [NogBaig + kap W) + Mag 3485 + QB + 2w d%2 (5)

1
Ut = EﬂAaﬁvp Nog Nyp * 2Bagyp Nog Myy + Gagyp Mag My + Ag3pz Qo Qg)d€2 (6)

W zf(paua * pw)dQ + '/C.U (Naﬁua + M(xﬁfpa + aﬁw)nﬁdc (8)
W =£u [NO(B(_T{O‘ + l.la> + MCMB(_E;O( + ¢Ol> + Qﬁ(—’\; + W):}nﬁdc (9)

In equations (3) to (9), CO(BYP’ Doszp’ and Fozﬁyp are extensional stiffnesses, bend-
ing stiffnesses, and stiffness interaction coefficients of the shell; Coz363 are transverse shear




stiffnesses of the shell; Aaﬁww Baﬁvp’ Gaﬁypﬂ and Aa3ﬁ3 are shell compliance coeffl(():lents
(see appendix A); kaﬁ are the curvature components and twist of the shell surface; )-Naﬁ
are the initial stress resultants (prestress ficld) which are proportional to the in-plane load fac-
tor A; p, and p are the external load components in the orthogonal coordinate direc-

tions x, and X3, respectively; mg, myp, and m- are density parameters of the shell

o
defined in appendix B; «w is the circular frequency of vibration of the shell; £ is the

shell domain; ¢, and «c¢,, are portions of the boundary over which tractions and displace-

o u
ments are prescribed; n, is the unit normal to the boundary; the quantities with a tilde
denote prescribed boundary stress resultants and displacements; and 4, = I

«
FINITE-ELEMENT DISCRETIZATION

The shell region is decomposed into finite elements Q) connected at appropriate
nodes, where the superscript e refers to the element. A typical element is isolated from the

model and the fundamental unknowns are approximated by expressions of the form:

Displacement models

u, = Ny (10)
w = Nk (11)
bo = N'31q (12)

Mixed models

In addition to the approximations of the generalized displacements (eqs. (10) to (12)), the

stress resultants are approximated by

Nog = N'H] 5 | (13)
- g

Mog = NHLy5 (14)

Qq = MHL (15)

where superscripts identify the location and subscripts designate the ordering of nodal unknowns;
N' are the shape (or interpolation) functions; 1,&} (i=1tom, J=11to}35)are nodal dis-

placement parameters (including, possibly, nodeless variables); H;- (i=1 to m, J=1to 8)




are nodal stress-resultant parameters; m equals the number of shape functions in the approxi-
mation; Greek indices take the values 1,2; and a repeated lowercase Latin index denotes sum-

mation over the range 1 to m.
ELEMENT-BEHAVIOR REPRESENTATION

A number of displacement and mixed finite elements having both triangular and quadri-
lateral shapes were developed in the present study. All the elements satisfy the continuity
conditions required by the variational principles on which they are based. Within each family
of elements, different shape (or interpolation) functions are used for approximating the funda-
mental unknowns. The characteristics and designations of these elements are summarized in
table 1 and are referred to frequently in the subsequent sections.

All the triangular elements developed are based on complete polynomial approximations
of the fundamental unknowns, thus ensuring that the functional variation is independent of
coordinate transformations. Most of the quadrilateral elements considered in the present study
are of the serendipity type (refs. 19 and 20), that is, with their nodes located along the ele-
ment boundaries. The polynomial approximations used in these elements include terms which
are of higher order than the complete expansion, and therefore, the functional variation is

dependent on coordinate transformation.

In each element, the same set of shape functions is used for approximating all the fun-
damental unknowns and the nodal parameters are selected to be the values of the fundamen-
tal unknowns at the different nodes. However, in one of the elements (SQ8-4 element),
polynomials of different degree were used for approximating different sets of fundamental
unknowns (lower degree polynomials were used for approximating the rotations); in the
SQH element, products of first-order Hermitian polynomials were chosen as shape functions
and the nodal parameters consisted of the generalized displacements, their first derivatives, and
mixed second derivative with respect to the dimensionless local coordinates £; and £,.
(See appendix C.) Continuity of these derivatives is enforced along the interelement bound-
aries. Since this is not required by the variational principle, the element is overconforming.

For the two quadrilateral stiffness elements with four and eight nodes, internal degrees
of freedom are added through the addition of displacement modes which vanish along the
edges of the element. Those modes are usually called bubble functions (ref. 21). The shape
functions associated with the internal degrees of freedom are products of the equations of the
clement boundaries times another polynomial, with the product representing bubble or internal
displacement modes (elements SQ5, SQ7, SQ9, and SQ11). The case of one internal mode
(SQ5 and SQ9) corresponds to zero degree of the latter polynomial. (See table 1 and

appendix C.)




In all the elements developed, the rigid body modes that cause no straining have not
been included explicitly in the displacement fields; rather, implicit representation of these modes
was made. A quantitative estimate of the accuracy of rigid-body-mode representation was made
by evaluating the six lowest eigenvalues of the element stiffness matrix. This is discussed fur-

ther in connection with the numerical studies.

For modeling shells with curved boundaries, isoparametric elements were used in which
the element boundary curves are approximated by the same shape functions used in approxi-
mating the behavior functions, that is,

xXg = Nxg, (16)

where X:x are the nodal values of x,. Numerical results obtained with the use of isopara-

metric SQ12 elements are presented in the next main section.
FINITE-ELEMENT EQUATIONS

The governing equations for each element are obtained by first replacing the fundamental
unknowns by their expressions in terms of the shape functions (egs. (10) to (15)) in the
appropriate functional (action integral for displacement models and Hellinger-Reissner functional
for mixed models) and then applying the stationary conditions of that functional. This leads

to a set of equations for each element of the following form:
Displacement models
1y 1 i ij
(K + ?\K}wj P + w” WIJ ] (17)

Mixed models

EERTARE S A
oy T SnYy
and > (18)
i zi - pi j /
S + AK = + \1
SIJ J S T IJ¢/J

i e
where KJJ and K” are stiffness and geometric, or initial stress, stiffness coefficients;

M;JJ are consistent mass coefficients; SJ and STJ are “‘gencralized” stiffness coefficients;

i . .. . .
and PI are consistent load coeft1c1ents. The formulas for the aforementioned stiffness, mass,

10




and load coefficients are given in appendix D. For stress-analysis problems, A = w = 0; for

bifurcation-buckling problems, w = PlI = 0; and for free-vibration problems, A = PlI = 0.

In equations (17) and (18) the range of the lowercase Latin superscripts is 1 to m; the
range of the uppercase Latin subscripts (I,J) and (T,.T) is 1 to 5 and 1 to 8, respectively.
The K, M, and S terms are completely symmetric under the interchange of one pair of
indices for another, each pair of indices consisting of a superscript and a subscript just beneath
it.

To write equations (17) and (18) in matrix form, the first superscript-subscript pair of
each of the K, S, and M terms defines the row number and the second pair defines
the column number. For example, in equations (17) the term KIIJJ is located in the
[5G-1) + IJth row and the [5G-1) + J]th column of the element stiffness matrix.

In the stress-analysis problems, the internal degrees of freedom (nodal parameters associ-
ated with bubble modes) can be eliminated without any loss of accuracy by using the static
condensation procedure (ref. 22). In stability and vibration problems, this is not done since

it results in approximate elemental matrices.

The integrals in the expressions for the stiffness, mass, and load coefficients (appendix D)
are evaluated by means of the numerical quadrature formulas presented in references 20 and 23.
In each case, the quadrature formula selected had the least number of points required to ensure
exact evaluation of the integrals (depending on the degree of the interpolation polynomials).
Exceptions to this are the cases of general quadrilateral or isoparametric elements based on the
displacement models in which the stiffness and geometric stiffness coefficients contain fractional
rational functions that are approximated by polynomials in the numerical quadrature process.

Each entry in the elemental matrices S and S of the mixed models (egs. (18)) contains
just a single term. (See appendix D.) In contrast, the entries of the matrix K of the
displacement models (eqs. (17)) are linear combinations of at least four terms, as implied by
the repeated (dummy) subscripts of the coefficients K in appendix D. In view of this, the

formation of the elemental matrices for the mixed models is simpler and was found to be less
time consuming than for the displacement models.

BOUNDARY CONDITIONS

In the displacement models, only kinematic (geometric) boundary conditions need to be
satisfied. Force (stress) boundary conditions can also be satisfied if displacement derivatives
are chosen as nodal parameters (e.g., SQH element). The effect of introducing the stress
boundary conditions on the accuracy of solutions is discussed in the examples in the section
“Numerical Studies.”

11




In the mixed models, both kinematic and force (stress) boundary conditions must be
satisfied. The boundary conditions used in the present study are listed in table 2. The
numeral 1 in this table indicates that the nodal parameter is retained and O indicates that the

nodal parameter is set to zero.

For inclined (or curved) boundaries, it is convenient to use a modified set of nodal
parameters including normal and tangential components of displacements and stress resultants

at the boundary points, that is, u,’, @/, Narﬁr, Mafﬁr, and Qs (see fig. 2), where

a b
SN 0
juaé Iuari
[ el (19)
Do Bl
i . o ‘/'
(/ '\.. - ~,
j of | JN(X'B'1
\ ,/) = Loa! Qﬁaﬁr\l 0
M e
Qu = %o Qu b
with Qoz,cx’ = cos(xa,xar) (22)

The element cquations at that boundary point are modified accordingly. For example, equa-
tions (17) are modified as follows:

[Kilj'J' " mllj’lj Vo= Pyt o dpp v, (23)
where the relations between KIIJ,J, and KIIJJ are given by

i _ ij

Kagr = faa’ Y Kog 4)
j oo ij

K)oy =t KD, (25)
ij _ ij

Ka’,ﬁ’+3 = Lo 28,8 Ka,3+3 (26)




K3y = K3 27
j _ ij
K3,a’+3 - Qa,a' K3,a+3 28)
ij _ ;e
Kowzpes = fao 86 Kotz g3 (29)
with similar relations for I_(IJ, , and Y

I'J 17"
ASSEMBLY AND SOLUTION OF EQUATIONS

If the elemental matrices are assembled and the boundary conditions are incorporated,
the resulting finite-element field equations can be represented in the following compact form:

Displacement models
EQK] + K@] W = &)+ 2 W {v) (30)

Mixed models
.;_:!T“'"";L_; - ey =

where E(], [@, [f\ﬂ, and <P> contain the stiffness, geometric stiffness, mass, and load
distributions; [;S] andd [5] contain the “generalized” stiffness distributions; <¢> and (@
are the vectors of nodal unknowns composed of the subvectors 1,[/1J and Hlj at the various
nodes; and the superscript T denotes transposition. Note that in the mixed models

G

(egs. (31)), the stress resultants are assembled first.

The matrices ﬁ(] and [SJ are symmetric, positive definite, and can be banded; the
matrices [M] and E_K] are banded symmetric; and the matrix [ﬁ] is sparse.

For stress-analysis problems, that is, A = w = 0, the governing equations of the displace-
ment models (egs. (30)) can be solved by any of the efficient direct techniques published in
the literature. (See, e.g., refs. 24 to 26.) On the other hand, the governing equations of the
mixed models can best be solved by the hypermatrix Gaussian elimination scheme. (See
ref. 27.)




For eigenvalue problems, it is convenient to modify the equations of the mixed models
(egs. (31)) by first eliminating the stress resultants and then rewriting the resulting equations
in the following form:

[[S] + K I\J} /Q\ {P + w2 (i) {w\ (32)

\

where

5] - ) (33)

The matrix [‘ij is positive definite.
EIGENVALUE EXTRACTION TECHNIQUES

In the absence of the external load vector (P}, equations (30) and (31) define an alge-
braic eigenvalue problem. For free-vibration problems A = (P = 0, the natural frequencies
are obtained by applying the subspace iteration technique presented in reference 28 to the

equations of the displacement model.

The technique is based on the use of simultaneous inverse iteration with Gram-Schmidt
orthogonalization. The number of vectors used in the iteration process is more than the eigen-
vectors required, but much less than the dimensions of the matrices considered.

For the mixed models, the natural frequencies are obtained by applying the Sturm
sequence technique with iterations to the modified equations (egs. (32)). In this technique
the desired roots are first isolated by Sturm sequence procedure, then the inverse iteration tech-
nique is applied for the determination of individual roots along with their cigenvectors.  (See
ref. 29.)

For bifurcation-buckling problems, where only the minimum buckling load parameter is
required, it is more efficient to use the inverse-power method presented in reference 30 for

both the displacement and mixed models.
EVALUATION OF STRESS RESULTANTS

In the mixed models, once the problem is solved, all the stress resultants are readily
available. On the other hand, in the displacement models the stress resultants are obtained

from the nodal displacement parameters by using the following relations:

Nog ﬁ .
L W\ <a ML+ kMY wie DN, (34)
Mag 04879 @aﬁw

14




Qu = Cazgz o'y + N ki) 35)

The stress resultants obtained from equations (34) and (35) generally violate both the
interior differential equilibrium and the stress-resultant boundary conditions and generate discon-
tinuities at the element nodes. Therefore, in the present study the customary procedure of
averaging contributions of contiguous elements at common nodes is followed. Such averaging
is not needed for the SQH element.

Other techniques have been suggested to improve the accuracy of the stress calculations.
These include the integral stress technique (ref. 31), which is based on least-squares minimiza-
tion of the stress error function within each element, and the conjugate stress method (ref. 32),
which uses biorthogonal expansion to the displacement approximation. Both these approaches
involve additional computational efforts and are not used in the present study.

NUMERICAL STUDIES

To assess the relative merits of the different displacement and mixed finite-element mod-
els developed in this study (table 1), a large number of linear stress-analysis, free-vibration, and
bifurcation-buckling problems are solved by these finite-element models. Particular emphasis is
placed on the effects of shear deformation and anisotropic material behavior on the accuracy

and rate of convergence of the different models.

The numerical examples are aimed at clarifying a number of questions concerning each
of the following effects on the accuracy and rate of convergence of finite-element solutions:
(a) an increase in the order of approximating polynomials, (b) addition of internal degrees of
freedom, and (c) use of derivatives of generalized displacements as nodal parameters.

PLATE EVALUATION RESULTS

Four sets of plate problems are solved which contain some of the characteristics typical
of practical problems and at the same time are problems for which an essentially exact solu-
tion can be obtained. In one of the problems, comparison is made with experimental results.

The problems examined are

(a) Stress, free vibration, and bifurcation buckling of laminated orthotropic square plates

with simply supported edges
(b) Stress analysis of orthotropic square plates with clamped edges

(c) Stress and bifurcation-buckling analysis of square anisotropic plates with simply sup-

ported edges

(d) Stress analysis of cantilevered skew plates
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All the models in table 1 are applied to problems (a) and (b). The higher order dis-
placement and mixed elements are applied to problem (c). The higher order quadrilateral dis-
placement models SQH and SQ12 are applied to problem (d). he results of these studics are

discussed subsequently.

gluare Plates

The first set of problems considered is that of the stress, free vibration, and bifurcation
buckling of orthotropic and anisotropic square plates. Most of the results presented in this
section are for the symmetrically laminated nine-layered graphite-epoxy plates shown in figure 3.

For these plates two fiber orientations are analyzed:
(a) Orthotropic plates with fiber orientation (0/90/0/90/0/90/0/90/0)
(b) Anisotropic plates with fiber orientation (0/-0/0/-0/0/-0/0/-0/0), where 0 < @ < 45°

For orthotropic plates the total thickness of the 0° and 90° layers is the same, and for
anisotropic plates the total thickness of the # and -8 layers is the same. Boundary conditions

for both simply supported and clamped plates are considered.

Simply Supported Orthotropic Plates

The orthotropic plate problems are selected because an exact (analytic) solution can be
obtained, and therefore, a reliable assessment of the accuracy of the different finite-element
models can be made. The various solutions obtained are listed first and are discussed subse-
quently.  Since doubly symmetric deformations of the plate are considered, only one-quarter
of the plate was analyzed, and the symmetric boundary conditions along the center line are
listed in table 2.

For stress-analysis probiems, the plates were subjected to uniform loading In addi-

Po-
tion to studying the accuracy of the maximum displacements and stress resultants obtained by
the various displacement and mixed models, an error index E¢  (a function of ) has been
introduced to provide a quantitative measure of the relative accuracy of the stress resultants

and displacements obtained by the different models. The error index is given by

il f. - T 2
o= WVE (ot 59
n i=1 l max‘
where
f any of the stress resultants or generalized displacements
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fi,fi exact and approximate values, respectively, of the function at the ith node

|fmax‘ maximum absolute value of the exact function in the domain of interest (one-quarter
of the plate)

n total number of nodes in one-quarter of the plate

The error index (eq. (36)) is essentially a weighted root-mean-square error. The smaller the
error index Eg, the more accurate the approximate solution (obtained by the finite-element

model) is.

To study the effect of shear deformation on the performance of the different finite-
element models, three values of the thickness ratio h/a of the plate were considered:
h/a = 0.1, 0.01, and 0.001. As a quantitative measure of the shear deformation, the ratio of
the strain energy due to transverse shears to the total strain energy was computed for the three
plates. The results are shown in table 3. As can be seen from this table, the shear deforma-
tion is quite important for the first plate and is negligible for the latter. Table 4 gives the
values of the error index Eg for each of the stress resultants and generalized displacements
obtained by some of the stiffness and mixed finite-element models for two plate thicknesses
(h/a = 0.1 and 0.01) and three different grids. An indication of the accuracy and rate of con-
vergence of the solutions obtained by the different models is given in figures 4 and 5, and the
effect of h/a on the accuracy of the different models is shown in figure 6.

The doubly symmetric free-vibration modes of the plate are analyzed by the various ele-
ment models. An indication of the accuracy and rate of convergence of the fundamental fre-
quency obtained by different displacement and mixed models is given in table 5 and figure 7
for plates with thickness ratios h/a of 0.1 and 0.01. Figure 8 shows the effect of addition
of internal degrees of freedom on the accuracy and rate of convergence of the four- and
eight-node stiffness quadrilateral elements. Table 6 shows the rate of convergence of the three
vibration frequencies W13 W31 and w33 obtained by different stiffness models.

To study the effect of the bending-extensional coupling on the accuracy of the higher
order models, the SQ12 and SQH elements were applied to the free-vibration problem of
two-layered orthotropic plates. Results obtained by these two elements for the two plates
with h/a = 0.1 and 0.01 are shown in table 7 along with the exact solutions.

As a quantitative measure of the shear deformation, the exact frequencies obtained by
the shear-deformation and classical theories are compared in tables 5, 6, and 7.

Since the accuracy of the different elements for buckling problems is expected to be
similar to that for vibration problems, only the SQ12 and SQH elements were applied to the
bifurcation buckling of a plate subjected to uniaxial edge compression )\N?l. The results




obtained using a 2 X 2 grid in the plate quarter are given in table 8 along with the exact
solutions for the three thickness ratios hja = 0.1, 0.01, and 0.001.

An examination of the results obtained for simply supported orthotropic plates reveals

(1) Although the convergence of the solutions obtained by all the displacement models
is monotonic in character, the convergence of the lower order models is much slower than
that of the higher order models. This is particularly true for stress resultants and for thinner
plates. (See figs. 4 and 7.)

(2) For the same total number of degrees of freedom, the higher order displacement
models (e.g., SQ12 and SQH) lead to considerably more accurate results than the lower order
models. This is particularly truc for stress resultants and for thinner plates. (See fig. 5.)

The same phenomenon is observed for vibration frequencies. As an example of this, for plates
with hfa = 0.1, the fundamental frequency obtained by the SQ12 and SQH eclements and

2 X 2 grid (corresponding to 99 and 108 degrees of freedom) agrees with the exact frequency
to four significant digits. (See table 5.) In contrast, the error in the fundamental frequency
obtained by the SQ4 element and 5 X 5 grid (108 degrees of freedom) is approximately

2 percent. For higher frequencies and thinner plates, the accuracy of the SQ4 element dete-

riorated much more rapidly than that of the higher order models. (See tables 5 and 6.)

(3) The accuracy of the solutions obtained by the lower order displacement models
(SQ4 clement) is very sensitive to variations in the thickness ratio of the plate. For thinner
plates, the accuracy of this element was found to be very poor. (See tables 4, 5, and 6.)
This is because the assumed displacement functions require that the element edges remain
straight, and the predominant bending deformation in thin plates is thereforc poorly represented.
This fact has been recognized by previous investigators and improvements have been suggested.
(See, e.g., refs. 12, 14, 15, and 33.) However, no procedure exists to improve the accuracy

of the element for all ranges of thickness ratio of the plate.

(4) The SQ8-4 element, with different-order polynomial approximations for displacements
and rotations, although considerably more accurate than the SQ4 element, is found to be less
accurate than the SQS8 element. (See fig. 4.) For thin plates (h/a = 0.001), the performance
of the SQ8-4 element was found to be unsatisfactory. (See fig. 6.)

(5) Of all the finite-element models considered, the most accurate results for a given total
number of degrees of freedom were obtained with the SQH element. (See fig. 5 and tables 5
and 6.) The SQH element has the added advantage that the stress resultants are continuous
along the interelement boundaries and no averaging is neccded in their evaluation. However, in
the presence of concentrated loads or discontinuities in the geometric or material characteristics,
some of the nodal parameters are discontinuous and a special treatment is needed. (See, e.g.,
ref. 34.)
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(6) Bending-extensional coupling does not appear to have any adverse effect on the accu-
racy of the higher order displacement models. (See table 7.)

(7) The addition of internal degrees of freedom (bubble modes) to the displacement mod-
els results, in general, in improving the performance of the element. (See tables 4, 5, and 6
and fig. 8.) In stress-analysis problems where the internal degrees of freedom can be eliminated
by static condensation techniques, this is an effective way of improving the accuracy of the ele-
ment, without affecting the accuracy of the solution. For free-vibration problems, the addition
of internal degrees of freedom is less effective than the addition of nodes to the element. An
exception to this is the case of the SQ8 element when applied to the analysis of higher vibra-
tion modes of plates. In this case addition of higher order polynomial terms associated with
internal degrees of freedom has a more pronounced effect on the accuracy than the addition
of nodes. (Compare the frequencies obtained by SQ9 and SQI12 elements for the case m = 3,
n = 3 in table 6.)

(8) Whereas for the SQ4 element addition of a single internal degree of freedom results
in considerable improvement in accuracy, for the SQ8 element three internal degrees of freedom
have to be added before a pronounced effect on accuracy can be observed. (See fig. 8) An
exception to this is the case of higher vibration modes, where the addition of a single internal
degree of freedom improves the accuracy of the SQ8 element substantially. (See table 6.)

(9) The solutions obtained by the mixed models are more accurate and less sensitive to
variations in the thickness ratio of the plate than those obtained by the displacement models
based on the same shape functions. (See tables 4 and 5 and figs. 4, 5, and 6.) However, the
convergence of the solutions obtained by the lower order mixed models (MT3 and MQ4) is
slow and oscillatory in character. Also, for a given number of degrees of freedom, the accu-
racy of the solutions obtained by mixed models is lower than that obtained by higher order
displacement models (SQH, ST10, and SQ12). (See fig. 5.)

Two other conclusions were found but the solutions on which they are based are not

reported herein. These are

(10) The accuracy of the solutions obtained by the triangular elements was found to be
sensitive to the choice of their orientation. The best accuracy was obtained when the displace-
ment models (ST6 and ST10) had opposite orientation to that of the mixed models (MT3
and MT6). (See fig. 4.) The results shown in tables 4, 5, and 6 and in figures 4, 5, 6,
and 7 were obtained for the aforementioned choice.

(11) The effect of satisfying the force boundary conditions for the SQH element (in addi-
tion to the kinematic conditions). was found to be insignificant. Differences occurred only in
the fourth significant digit.




Before closing this section, a comparison of the eclements developed in the present study
with those previously reported in the literature is in order. Since most of the latter elements
do not include shear deformation, the problem of an isotropic square plate with h/a = 0.01,
for which the shear deformation is negligible, was selected. The plate had simply supported

edges and was subjected to uniform loading p The convergence of solutions obtained by

o
several classical plate elements was reported in reference 11. Figure 9(a), which is reproduced
from reference 11, is contrasted with figures 9(b), (¢), and (d), which show the convergence

of the center displacement w, center bending moment M1, and strain energy U obtained
by a number of displacement and mixed shear-flexible elements. Except for very coarse grids
(2 X 2 or less in the plate quarter), the higher order elements developed in the present study
are competitive with the refined eclements previously reported in the literature. The problem

of the thin isotropic plate represents a rather severe test for the accuracy of the shear-flexible

clements, since the accuracy of such elements reduces with the diminishing of shear deformation.

Clamped Plates

To study the effect of clamped edges as boundary conditions on the accuracy of the
different stiffness models, the edges of the orthotropic plates considered in the previous sub-
section were assumed to be totally clamped and the plates were analyzed by the different
stiffness and mixed models. The plates were subjected to uniform loading of intensity Po-
The standard of comparison was taken to be the solution obtained by the SQH element and
a 6 X 6 grid in the plate quarter for h/a = 0.1, and an 8 X 8 grid for h/a = 0.01
and 0.001. An indication of the accuracy and rate of convergence of displacements and stress
resultants obtained by the different models is given in figure 10 for three plate thicknesses,
namely, hfa = 0.1, 0.01, and 0.001. Also, fisure 11 shows the distribution of the transverse
displacement w and the bending moment M for the thinner plates (with h/a = 0.01
and 0.001) obtained by the higher order displacement models SQ12 and SQH and the mixed
model MQ& with a 2 X 2 grid in the plate quarter. As can be seen from figure 10, the
solutions obtained by the different displacement and mixed models were, in general, less accu-
rate than those for simply supported edges (fig. 6). This is particularly true for thinner plates.
An exception to this is the SQH element, which exhibited very high accuracy and fast conver-
gence for all thickness ratios. Also, the remarks made in the previous subsection regarding the
effect of h/a on the accuracy and convergence of the solutions obtained by different models

were found to apply in this case, as well.

Anisotropic Plates

To study the effect of anisotropy on the performance of the higher order displacement
models, the fiber orientations of the graphite-epoxy plate shown in figure 3 were chosen to
be (0/-0/0/-0/0/-0/0/-0/0) with 0 < 0 < 45°. The plate had simply supported edges and
was subjected to uniform loading of intensity p.
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Before the numerical studies were conducted, the effects of variations of 6 on the
response of the plate were studied. Also, an attempt was made to introduce a quantitative
measure of the degree of anisotropy of the plate. Since the elastic coefficients Coz3ﬁ3
(with o # f) and CO‘BW)’ FO<57P’ and Daﬁvp (with either o« = and vy # p or
o # B and v = p) vanish for orthotropic (and isotropic) plates and are nonzero only for
anisotropic plates, it seems reasonable to take their contribution to the total strain energy of
the plate as a quantitative estimate of its degree of anisotropy. Henceforth, the contributions
of the anisotropic coefficients to the total strain energy will be referred to as U,.

Figure 12 shows the effect of variations in 6 on the values of the displacement w
and the bending-moment resultant M;; at the center of the plate as well as on the strain
energies U, U,, and Ug,. An examination of figure 12(c) reveals that the case 0 = 45°
leads to the highest degree of anisotropy and the maximum value of the shear deformation.
Therefore, the anisotropic plate with 0 = 45°  was adopted for the convergence studies.

An indication of the accuracy and convergence of the higher order displacement mod-

els ST10, SQI12, and SQH and the mixed model MQS8 is given in figure 13 for the plate thick-
nesses h/a = 0.1, 0.01, and 0.001. The standard of comparison (converged solution) was taken
to be the solution obtained by the SQH element and an 8 X 8 grid in the whole E)_Liti. Fig-
ure 14 shows the distribution of the transverse displacement w and the stress resultant My
for the thinner plates (h/a = 0.01 and 0.001) obtained by the SQ12 and SQH elements with

a 4 X 4 grid, along with the converged solutions. As in the cases of simply supported and
clamped orthotropic plates, the fastest convergence was obtained by using the SQH elements.
The only adverse effect of the anisotropy on the performance of the elements is in the non-

monotonic character of the convergence of stress resultants. (See fig. 13(b).)

As a further check on the accuracy of the SQH elements in the case of anisotropic
plates, the bifurcation-buckling problem of the eight-layered anisotropic plate shown in fig-
ure 15 was analyzed. The plate is subjected to combined compressive and shear edge loading.
The same plate was analyzed in reference 35 using Galerkin’s method. The results obtained
using three grid sizes of SQH elements (in the whole plate) are given in table 9 along with
those of reference 35. Also, the buckling mode shapes are shown in figure 15.

Skew Plates

The next problem considered is that of the stress analysis of an isotropic skew plate
subjected to uniform transverse loading (fig. 16). The problem was selected because it includes
a more complex set of boundary conditions and stress patterns than the ones previously

considered.

For this plate and these boundary conditions, an unbounded bending moment and a stress
singularity occur at point B. (See ref. 36.) The nature of the singularity remains unaltered
even when the shear-deformation theory (ref. 37) is used.
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Analytical and experimental studies of this problem were reported in reference 38. The
analytic solution was obtained by applying the mixed Hellinger-Reissner formulation in conjunc-
tion with direct variational methods to the classical plate theory (with shear deformation
neglected).

The plate was analyzed with both the SQ12 and SQH elements. An indication of the
accuracy and convergence of solutions obtained by both elements is given in figures 16(a)
and (b). Shown in figures 16(c) and (d) are the experimental and analytical solutions of
reference 38 compared with the present solutions.

An examination of figures 16(c) and (d) reveals that the solutions obtained by both the
SQH and SQI12 elements, in addition to having fast monotonic convergence, exhibit clearly the
sharp gradient (singularity) of the bending-moment resultant M55 at point B. Of the two
finite-element solutions, the SQH solution has a faster convergence and appears to be more
accurate. Moreover, for a 4 X 4 or finer grid, the total number of degrees of freedom in
the SQH solution is less than those in the corresponding SQ12 solution.

SHELL EVALUATION RESULTS

Five sets of shell problems are solved by the displacement models developed in the pres-
ent study. Comparison is made with exact and other approximate solutions whenever available.
These problems are

(a) Stress and free-vibration analysis of orthotropic shallow spherical segments
(b) Stress analysis of anisotropic shallow spherical segments

(¢) Stress analysis of an isotropic cylindrical shell with a circular cutout

(d) Free vibrations of an orthotropic cylindrical shell

(e) Free vibrations of an anisotropic cylindrical shell

All the displacement models listed in table 1 are applied to problem (a). Only the
higher order models are applied to problem (b). he isoparametric SQ12 element is applied
to problem (c), and the SQH element is applied to problems (d) and (e). The results of

these studies are discussed subsequently.

Shallow Spherical Shells

As a first application to a shallow-shell problem, consider the stress and free-vibration
analyses of simply supported, nine-layered, graphite-epoxy spherical segments. hie geometric
and material characteristics of the shell are shown in figure 17. As for the laminated plates
examined in the previous subsections, shallow shells with two fiber orientations have been

analyzed:
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(a) Orthotropic shells with fiber orientation (0/90/0/90/0/90/0/90/0)
(b) Anisotropic shells with fiber orientation (8/-6/0/-6/6/-0/6/-0/0), with 0 < 6 < 45°

Orthotropic Shallow Shells

For the orthotropic shells considered, analytic solutions were obtained and used as a
standard for comparing the different finite-element solutions. Doubly symmetric deformations
of the shell were considered, and therefore, only one-quarter of the shell was analyzed.

For stress-analysis problems, the shells were subjected to uniform loading p,. The
different displacement models were used to obtain solutions for three thickness ratios of the
shell (h/a = 0.1, 0.01, and 0.001). As a quantitative measure for the shear deformation, the
ratios of the strain energy due to transverse shear to the total strain energy of the shell were
computed for the three shells. Results are given in table 10, and as for orthotropic plates,
the shear deformation is quite important for the thickest shell and is negligible for the two

thinner shells.

An indication of the accuracy and rate of convergence of the solutions obtained by the
different models is given in figure 18 for the shell with h/a = 0.1. The effect of h/a on
the accuracy of the different finite-element solutions is shown in figure 19. The distributions
of the transverse displacement w and the stress resultants N5, and Mjp; obtained by
the higher order elements SQ12 and SQH with a 2 X 2 grid in the shell quarter are shown
in figure 20 along with the exact solutions for the two thinner shells (h/a = 0.01 and 0.001).

The first four doubly symmetric vibration frequencies obtained by the different displace-
ment models are listed in table 11 along with the exact frequencies for two thickness ratios
(h/a = 0.1 and h/a = 0.01). The solutions obtained using the SQ4 element were, in general,
far removed from the exact solutions and are not reported herein.

The orientation of the ST6 and ST10 elements, for optimum accuracy, was found to be

the same as that for orthotropic plate problems. (See fig. 4.)

An examination of figures 18, 19, and 20 and table 11 reveals that the remarks made
in connection with the orthotropic-plate problems regarding the effectiveness of the higher
order models (ST10, SQ12, and SQH elements) and the effect of internal degrees of freedom,
apply in this case as well. The apparent poor performance of the different models for the
case of very thin shells (with h/a = 0.001) is due to the boundary-layer effects exhibited by
the stress resultants (see fig. 20), hence the difficulties (and nonmonotonicity) in convergence
observed in figure 19. The convergence of the total energy obtained by the higher order
models was fast and monotonic, even for the very thin shell. (See fig. 19(d).)
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Anisotropic Shallow Shells

For anisotropic shells the fiber orientations were chosen to be (0/-0/6/-0/6/-016]-0/6)
with 0 < 0 < 45°. The shells were subjected to uniform loading of intensity p,. The
quantitative measures for the degree of anisotropy and amount of shear deformation introduced

for anisotropic plates were used for the anisotropic shallow shells as well.

Figure 21 shows the effect of variations in 6 on the values of the center displace-
ment w and the center stress resultants Ny and My; for two thickness ratios of the
shell (h/a = 0.1 and 0.01). Also shown (fig. 21(d)) are the strain energies U, U,, and Ush'
The maximum values of Ush/U and Ua/U occur at different values of 6. This is to be

. , ) . : )
contrasted with the anisotropic plates, for which the maximum values occurred at 0 = 457,

The accuracy and convergence studies were conducted for shells with 8 = 45°. Fig-
ure 22 gives an indication of the accuracy and convergence of the center displacement w  and
the strain energy U obtained by the higher order displacement models (ST10, SQ12, and SQH)
for the three thickness ratios h/a = 0.1, 0.01, and 0.001. The standards of comparison (con-
verged solutions) were taken to be the solutions obtained by the SQH elements. An 8 X §
erid was used for shells with h/a = 0.1 and 0.01, and a 10 X 10 grid was used for shells
with h/a = 0.001. The distributions of the normal displacement w and the stress resul-
tants Nyy and My; obtained by the SQI2 and SQH elements with a 4 X 4 eorid for the
thinner shells (with h/a = 0.01 and 0.001) are shown in figure 23 along with the converged
solutions. As in all the previous problems, the SQH solutions had the fastest convergence.
The degradation of accuracy due to anisotropy for very thin shells, though not pronounced for
higher order displacement models, can be clearly seen by comparing the results in figures 20
and 23.

Rigid Body Modes

For shallow shells, the rigid body modes are trigonometric in character and therefore
are only approximated by the polynomial shape functions used in the present study. To assess
the accuracy of the approximation, the eigenvalues of the stiffness matrices of the various dis-
placement models were computed for the three anisotropic shallow shells with h/a = 0.1, 0.01,
and 0.001. The lowest six eigenvalues correspond to rigid body modes; the higher modes are
straining modes. Table 12 summarizes the lowest seven eigenvalues, the maximum eigenvalues,
and the traces of the stiffness matrices for the various models. In all cases the ratio 67/66
was greater than 105, which indicates that the rigid body modes are satisfactorily represented

in these models.
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Cylindrical Shells

Isotropic Cylinder With a Circular Cutout

Consider the stress analysis of an isotropic cylindrical shell with a circular cutout sub-
jected to a uniform axial tensile stress at its free ends. The geometric characteristics of the
shell and loading are shown in figure 24. The problem was selected to assess the accuracy of
the isoparametric SQ12 elements in situations where high stress gradients and curved boundaries
occur. The shell and loading are doubly symmetric, and therefore, only one-quarter of the

shell was analyzed.

An approximate analytic solution for the problem, assuming the cylinder to be of infi-
nite length, was given in reference 39, where it was shown that for this shell, the shallow-
shell approximation is valid. Therefore, the use of the SQI12 elements, with local element
coordinates coinciding with global shell coordinates, is justified. A difference-based variational
solution was given in reference 40. Finite-element solutions using higher order triangular ele-
ments were reported in reference 41. All the aforementioned solutions were based on the
classical shell theory (with shear deformation neglected). Solution to a similar cylinder problem
using a refined grid of shear-flexible quadrilateral elements was reported in reference 42.

Four graded networks with 4 X 4, 5 X 4, 5 X 6, and 8 X 6 SQ12 elements were used
to analyze the shell. (See fig. 25.) 1In an attempt to make a rational choice for the variation
of the grid size in both the x;- and x,-directions, a variable grid parameter ¢ was introduced
(ref. 43 and fig. 26):

& = T (st - ) (37)

where {, is the relative size of the rth element, 7 refers to each of the x;- and x9-
coordinates, mn, and mn.4; are the coordinates of the ends of the element, and n is the
number of elements in the n-direction. A second-degree polynomial variation of {, was
chosen, that is,

o = a+br+ cr? (38)

where 1 is the element number 1 < r < n. The coefficients a, b, and ¢ of the poly-
nomial are determined by specifying the relative sizes of the first and last elements §‘1
and §‘n, and using the following three equations:

n

1
=2 & =10 (39)

r=1
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The characteristics of the grids used in the present study are shown in figure 26.

The maximum stress concentrations 011/00 and strain energies obtained by the four
grids are given in table 13 along with results of previous investigators. Membrane stress dis-
tributions obtained by the 4 X 4 and 8 X 6 grids are shown in figure 27. The high accuracy
and rapid convergence of the solutions obtained by the isoparametric SQ12 elements are clearly
demonstrated by this example.

Orthotropic Cylinders

The natural frequencies and mode shapes of orthotropic, two-layered, simply supported
circular cylinders without axial restraint are studied. The problems are selected to assess the
accuracy of the SQH elements when applied to laminated closed cylinders with high bending-
extensional coupling. The geometric characteristics of the shells studied are shown in figure 28.

hells with fiber orientation (90/0) are analyzed.

For these cylinders an analytic solution is obtained and is used as a basis for comparison
of the finite-element solutions. It is found that for this shell, the shallow-shell (Donnell’s)
theory approximation is valid. The doubly symmetric vibration modes of the cylinders are
analyzed and the symmetric boundary conditions along three of the edges are applied. This
eliminates the axial rigid body mode of the cylinder and allows obtaining the vibration modes
having odd values of m (axial direction) and even values of n (circumferential direction).
Initially a uniform grid with 2 X 2 SQH elements was used to model one octant of the cyl-
inder (grid 1, fig. 29); however, this resulted in poor accuracy for the frequencies and mode
shapes with n > 4. Subsequently, the 2 X 2 grid was modified to cover only one-eighth of
the circumference (grid 2, fig. 29). This resulted in considerable improvement in the accuracy
of the frequencies for n = 4. The frequencies obtained by the two grids are given in table 14
along with the analytic solutions obtained by both the shear-deformation and classical shallow-
shell theories. This table shows the decrease in accuracy as the element size-to-wavelength ratio
increases in the circumferential direction, as indicated by the increase of n. Numerically, the
error increases from less than 0.5 percent for m = 1, n = 2 to approximately 25 percent
for m =1, n = 4. The increased stiffness of the finite-element model due to the larger ele-
ment size-to-wavelength ratio has caused a greater increase in the error of the finite-clement
analysis between the two modes. The present example shows that the SQH elements lead to
very accurate frequencies provided the element size is less than half the wavelength of the

vibration mode.
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Anisotropic Cylinders

As a final example, consider the free-vibration analysis of anisotropic two-layered circular
cylinders. The shells have the same characteristics as those for the orthotropic cylinders dis-
cussed in the preceding subsection, except for the fiber orientation, which is chosen to be
(45/-45).

Solutions are obtained using three grids with 2 X 4, 4 X 8, and 6 X 12 SQH elements
in the whole cylinder. (See fig. 30.) In order to eliminate the axial rigid body mode of the
cylinder, u; is set equal to zero at the center of each grid. The fundamental frequency
and associated mode shapes are shown in figure 31. The rapid convergence of the solutions
obtained by the SQH elements is clearly demonstrated by this example.

CONCLUDING REMARKS

Several shear-flexible finite-element models are applied to the linear static, stability, and
vibration problems of plates and shells. The study is based on the shallow-shell theory with
effects of shear deformation, anisotropic material behavior, and bending-extensional coupling
included. Both stiffness (displacement) and mixed finite-element models are considered. All
the elements examined are conforming, satisfactorily represent the rigid body modes, and
exhibit uniform convergence for stress-analysis, free-vibration, and buckling problems. Primary
attention in this study is given to the effects of shear deformation and anisotropic material
behavior on the accuracy and convergence of different finite-element models.

On the basis of the present study, the following conclusions seem to be justified:

1. Higher order displacement models (with cubic or bicubic interpolation polynomials)
have the following advantages over lower order models:
(a) The total number of unknowns required for a prescribed level of accuracy is less
in the higher order than in the lower order models. This is particularly true for stress
resultants and for thinner plates (with negligible shear deformation).

(b) The performance of the higher order models is considerably less sensitive to
variations in the thickness ratio and shear deformation than that of the lower order

models.

2. The use of derivatives of displacements as nodal parameters (SQH element) has the
obvious advantage that the stress resultants are defined directly at the nodes and no averaging
is needed. In addition, this results in improving the performance of the element. However,
in the presence of concentrated loads or discontinuities in the geometric or elastic characteris-
tics of the shell, some of the parameters will be discontinuous and a special treatment is

needed.
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3. The addition of internal degrees of freedom (bubble modes) to displacement models
results, in most cases, in improving the performance of the element. In stress-analysis problems
where the internal degrees of freedom can be eliminated by static condensation techniques,
this is an effective way of improving the accuracy of plate and shell elements without affect-
ing the accuracy of the solution. For free-vibration (and buckling) problems, the addition of
internal degrees of frecedom is less effective than the addition of nodes to the element. An
exception to this is the case of the eight-node quadrilateral clement when applied to the
analysis of higher vibration modes. In this case, addition of internal degrees of freedom has

a much more pronounced effect on the accuracy than the addition of nodes.
4. If mixed models are contrasted with displacement models, the following can be noted:

(a) The development of mixed models involves considerably less algebra than the

development of displacement models.

(b) The performance of mixed models is, in general, insensitive to variations in the

thickness ratio and shear deformation.

(¢) Use of lower order interpolation functions (linear or bilinear) leads to a medi-
ocre type of performance. Considerable improvement in the performance is achieved by
using quadratic shape functions.

(d) For a given number of degrees of freedom, the higher order displacement mod-
els (with cubic or bicubic interpolation polynomials) lead to higher accuracy than the
mixed models with quadratic shape functions. The effective use of mixed models requires
the development of efficient cquation-handling techniques (e.g., based on hypermatrix stor-

age schemes).

5. Whereas material anisotropy was shown to have an adverse effect on the performance
of different displacement and mixed elements, the bending-extensional coupling does not seem

to have any pronounced effect on the accuracy and convergence of these elements.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

November 10, 1975
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APPENDIX A

FUNDAMENTAL EQUATIONS OF SHEAR-DEFORMATION SHALLOW-SHELL THEORY

The fundamental equations of the shallow-shell theory are given in this appendix.
STRAIN-DISPLACEMENT RELATIONSHIPS

The relationships between strain and displacement are

€af = %(E)auﬁ + aﬁua> + kqu W
_ 1 :
; Xop = 5(0atp + 3p0q)

26043 = 0w t by

where €qp  are the extensional strains of the reference surface of the shell; Xop are the
curvature changes and twist; and 2e,3 are the transverse shearing strain components.

CONSTITUTIVE RELATIONS OF THE SHELL

The relations between the stress resultants and strain components of the shell are

Nog = Capyp €vp * Fapyp Xyp

Mag = Fapyp €vp T Dapyp Xyp

Qu = Ca3p3 2€83

The inverse relations are given by

B = Bapyp Nyp ¥ Bagyp Myp
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Xag = Bagyp Nyp + Gagyp My

2eq3 = Ag3p3 Qp

The C, F, and D coefficients are shell stiffnesses and the A, B, and G coefficients
are shell compliances defined in appendix B.
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APPENDIX B

ELASTIC COEFFICIENTS OF LAMINATED SHELLS

ELASTIC STIFFNESSES OF THE LAYERS

The nonzero stiffness coefficients CSTG)VP and 0&15)63 of the kth orthotropic layer of
the shell referred to the directions of principal elasticity are given by

X) k) /-
c1111 =~ Ep /k( )

(k) k) _K)/z(k
c1122 = VLT BT /7\( )

(I Eg@ /5\(1()

where the subscripts L and T denote the direction of fibers and the transverse direction,

V1T is Poisson’s ratio measuring the strain in the T-direction due to a unjaxial normal stress

in the L-direction:

L €222 =

i
(k) k)
¢1212 = OLT

and

k) (k)
c1313 = GLT
k) )
€323 = 61T

)\ZI—VLTVTL

and the superscript k refers to the kth layer.

vty EL = vLt Bt
3]
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The stiffness coefficients Cobyp and o383 satisfy the following symmetry relationships:

Cofyp T “ypaB T Bayp T Cafpy

and
Ca3B3 T B3a3 T C3aB3 T Ca33f

If the coordinates Xq are rotated, the elastic coefficients CaByp and 383 trans-
form as components of fourth- and second-order tensors, respectively. The transformation law
of these coefficients is expressed as follows:

Ca'By'p’ = Capye Yo B8 Ly Loy

and

0’38’3 T Ca383 ‘o B8

where /By p! and Ca'3g'3  are the stiffness-coefficients referred to the new coordinate

system X, and

ool = cos(xa,xaf)

ELASTIC COEFFICIENTS OF THE SHELL

The equivalent elastic stiffnesses of the shell are given by

I
Cagvor Fagug: D *I\Z% O 2! dx
[ afyp> " afyp aﬁwﬂ ‘k_l Cafyp I X3, X3 ) ax3
B h
k-1

and

NL D

o K k)

w383 = 2o ca3p3 dx3
k=1 Jhk 1

where NL is the total number of layers of the shell and hy and Dy _q are the distances
from the reference surface to the top and bottom surfaces of the kth layer, respectively. The
elastic compliances of the shell Aoszp’ Baﬁyp’ Ga,@yp’
sion of the matrix of the elastic stiffnesses. (See ref. 18.)

and Aa363 are obtained by inver-
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The shell stiffnesses and compliance coefficients satisfy symmetry and transformation rela-

tions similar to those of the stiffness coefficients of individual layers.

The density parameters of the shell are given by
NL hk
- k 2
Eno, mi, mﬂ = Z / pg ) E, X3, x3:] dxs

hy_y

where pgk) is the mass density of the kth layer of the shell.
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APPENDIX C

SHAPE FUNCTIONS USED IN PRESENT STUDY

QUADRILATERAL ELEMENTS

The expressions of the shape functions for the different elements developed in this study

in terms of the quadrilateral coordinates £1,59 (ref. 44) are given in this appendix.

Bilinear Shape Function_s_

The shape functions for the bilinear approximations (elements SQ4 and MQ4, see
sketch (a)) are given by

w= e D) s )

(1,-1)
Sketch (a)

where 532) (with « = 1,2) are the quadrilateral coordinates of node j.

Quadratic Shape Functions

The shape functions for the quadratic approximations (elements SQ8 and MQS, see
sketch (b)) are given by

Corner nodes

W e )i+ o))+ e - ) 0= 1357
3
Midside nodes 2
. | 7 ®
n = %(1 )0+ ) G =26 ®

1

W = ‘%(1 + 515?)>(1 - 522> 0 =4.8) U ©)

Sketch (b)
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Cubic Shape Functions

The shape functions for the cubic approximations (element SQ12, see sketch (c)) are

given by

Corner nodes

, . (o
o= 31—2<1 + glg(f)xl + gzgg)>[9<gl + 52> - 1% G = 1,4,7,10)

Other nodes E’Z
0o rone)i v nd) om0 @ @@ T

W ®

. N/ N/ 2 E

W= 2 g ) - o0t - &) G = 561112 © ® 1

@

Sketch (¢)

Hermitian Shape Functions

The Hermitian shape functions (element SQH, sketch (d)) used in the present study were
products of the following set of first-order Hermite polynomials (sketch (e)):

3

e = 43 - 3+ 2) @ 2 B
He =53 -2 -+ €,
@
B3 = 5% - 3 - 2) @ @)
Sketch (d) Kfl(zﬂ / f(0)
o =B+
f2(C)—
c _ -1\/ C - +] C
f4(C)
Sketch (e)
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If the order of the nodal parameters at each node is chosen to be v,

2
and 5—28 ;E , where v denotes any of the fundamental unknowns, then the shape func-
1 “s2

tions are given by

= e ey

[

N = M gy
2 e

NTT = ) f E
.]+3 — N \
N = flE ey

where the subscripts 1 and ¢ are functions of j as follows:

W O N | e
—_ ) W | e

G L — —

Shape Functions Associated With Nodeless Variables (Bubble Modes)

Elements SQ5 and SQ9

These elements have one bubble mode given by

(1= 020 - )

It

S for SQS5
9 for SQ9
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Elements SQ7 and SQI11

APPENDIX C

These elements have three bubble modes given by

IO [ .

A (R [ 6D G=5 for SQ7; i =9 for SQII)

TS 22(1 - 512)<1 - 522) y

TRIANGULAR ELEMENTS

The expressions of the shape functions for the different elements developed in this study
in terms of the triangular (or area) coordinates £q,5p,53 (ref. 44) are given in the following

sections.

Linear Shape Functions

The shape functions for the linear approximations (element MT3, sketch (f)) in terms of

triangular coordinates are given by

3
Tw 0,1,0)

Sketch (f)

Quadratic Shape Functions

The shape functions for the quadratic approximations (elements ST6 and MT6, sketch (g))
in triangular coordinates are

Corner nodes
N = £(2¢; - 1) G=2-1; i=1to3 and is not summed)
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Midside nodes

N o= 48 & (j =2i; i=1to 3 and is not summed: Eg = gl>

O 28]
@ @ ©)
Sketch (g

Cubic Shape Functions

The shape functions for the cubic approximations (element STI10, sketch (h)) in triangular
coordinates are given by

Corner nodes (nodes 1, 4, 7)

N o= %(3% - 1?; (351 - 2)% G=31-2: 1=1to3 and is not summed)
T @ @ @
Sketch (h)
Boundary nodes
i 9 | X
N = 2 g g (38 - 1) j =3i - 1, nodes 2, 5, 8
21‘1(l ( )<i=1to3 and is not
/ summed; £4 = El>

W= %% & &41(384) - 1) (5 = 3@ nodes 3,6, 9)

/

Interior node (node 10)

W= 27568
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FORMULAS FOR COEFFICIENTS IN GOVERNING
EQUATIONS FOR INDIVIDUAL ELEMENTS

The expressions for the independent stiffness coefficients in equations (17) are given by
Kij=/ Coogr DN 3N Q2
af = Joe) xvBe TYT Tp

b i
Kg3 = '/s; (e Cavbo Kpo 4N W' 49

v i g

Ky 43 = /Q (@ Fargp 34N 2N aQ

i < i i g
"3 /me) Cantyp ey Ko M N+ Caps 30’ 0] a0
b i i g
Kat3,3 = /Q(e) Fanto Kgp 20 W + Caggy N1 9] a0
i

- i j iyl
Ket36+3 = J (o) (Deygo 3N 3N + Cozpz N' N Ja

The independent nonzero geometric stiffness coefficients are given by

—ij

K =f N, 3 At BaN)
33 Q(e) 016 84 ﬁ :

The independent nonzero consistent mass coefficients are given by

b iy
Map —/Q(e) my Bep NN AR
Mo ges = / my 8, N N dQ2
B Qe of
i iy
433 fﬂ(e) my NN dQ
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™ - / my 8,5 NN dQ2
at3,6+3 q©) 2 Paf J
where 5046 is the Kronecker delta on « and §.

The expressions for the “generalized” stiffness coefficients in equations (18) are given by

1 - i
Sotp-1,y4p-1 ~ /Q(e) Aggyp N° N7 dR

ij B i
Sctp-1,ytp+2 = /Q(e) Bugyp N' N dO2

ij 3 i
Sa+5+2,7+p+2 - /S;(e) Goq@*y,o NN dQ

ij

1 _ : J
Sat+6,6+6 = /Q(e) Aazpz NN dQ

—ij

= i j i j
Sot1 K/S;(e) (5 M BN + 50N 37 ) a2
_]J B . J
Setg-13 = /Q © Kep NP N dQ
SO(+6+2,’}’+3 - K /S;(e) (667N1 8aN + 60(7N1 aBN > df2

S) 63 = / N o do
’ qle)

——lj 3 . J
S =8 NN dQ
at6,6+3 = Oap —[2(6)

The consistent nodal load coefficients are given by
pi = / v ) ag
« qle) o

b - i 4o
3 /g(e)NNp
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In the above equations the contributions of the line integrals have been neglected for
simplicity; « is a constant equal to 1 when « # § and 1/2 when o« = B; the range of
the lowercase Latin indices is 1 to m, where m Iis the number of shape functions; the
range of the Greek indices is 1,2; and a repeated index denotes summation over the full
range of the index.

It should be mentioned that for elements with internal degrees of freedom (SQS5, SQ7,
SQ9, and SQ11), the indices i, in the expressions for P(ix and Pi3 were assumed to have
a range equal to the number of nodes in the element (i.e., 4 for SQ5 and SQ7 elements,
and 8 for SQ9 and SQI11 elements). This means that the loading was distributed on the nodes
of these elements and no loading was associated with internal degrees of freedom.
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TABLE 3.- EFFECT OF THICKNESS RATIO h/a ON TOTAL
AND TRANSVERSE SHEAR-STRAIN ENERGIES OF PLATES
Simply supported, nine-layered, square orthotropic plate subjected to

uniform pressure loading Py U denotes total strain energy of
plate and Ush denotes shear-strain energy of plate

U
. h
hja |UETh/p,2at| 5% X 100
0.1 0.1256 26.055
01 9.2980 3577
001 | 926.5123 .0036
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TABLE 7.- ACCURACY OF VIBRATION FREQUENCIES OBTAINED
BY SQ12 AND SQH ELEMENTS

Simply supported, two-layered orthotropic plate; 2 X 2 grid;

Ny = CL’m,rl\,/paz/ET

Values of ‘?m’n‘.(a/h)z] X 10'1 for —

m,n
SQ12 SQH Analytic solution
(a)
h/a = 0.1
1,1 1.0580 1.0578 1.0578  (1.1244)
;j }4.8447 4.8405 4.8305  (6.5730)
3,3 7.3000 6.8895 | 6.8757 (9.6664)
, h/a = 0.01
1,1 1.1463 1.1303 1.1300 (1.1308)

1,3
31 } 7.1596 6.9498 6.7319  (6.7644)

3,3 15.7435 10.4152 {10.1118 (10.1725)

aNumbers in parentheses refer to classical-theory
solutions (with both shear deformation and rotary

inertia neglected).




TABLE 8.- ACCURACY OF BUCKLING LOAD PARAMETER X
OBTAINED BY SQH AND SQI12 ELEMENTS

Simply supported, nine-layered, square orthotropic plate subjected

to uniaxial edge compression; Ncl’1 = -1:2 X 2 grid in one-

quarter of plate

Values of KaQ/ETh3 for —

% SQH SQ12 Analytic solution
(a)
0.1 27.012 27.014 |27.0069 (36.1597)
0t 36.051 36.419 |36.0365 (36.1597)
.001 36.177 69.060 |36.1585 (36.1597)

ANumbers in parentheses refer to classical-theory

solutions (with shear deformation neglected).
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TABLE 9.- CONVERGENCE OF BUCKLING LOAD PARAMETER A
OBTAINED BY SQH ELEMENTS
FSimply supported, eight-layered, anisotropic plate with fiber

orientation (90/0/-45/45/45/-45/0/90) subjected to
combined compressive and shear edge loadings;

h
2 = 7. o - n- o - 1. o - _
| a 0.0072; N11 0; N12 1; N22 1
Grid size Values of ?\az/ETh?’ for —
(full Galerkin’s
plate) SQH element | o104 (ref. 35)2
2 X2 19.745 19.590
3 X 3 19.194
4 X 4 19.046

4Based on classical theory (with shear deformation
neglected).




TABLE 10.- EFFECT OF THICKNESS RATIO h/a ON TOTAL AND TRANSVERSE
SHEAR~STRAIN ENERGIES OF SHELLS
Simply supported, nine-layered, orthotropic shallow spherical shells

(R/a = 10, f/a = 0.0125) subjected to uniform pressure loading

Py U denotes total strain energy and Ush denotes shear-strain

energy
U
) 74 sh
h/a UET}}//<pO a> X 100
0.1 0.1246 25.8512
.01 5.6983 2353
.001 15.6305 0014
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TABLE 13.- COMPARISON OF SOLUTIONS OBTAINED BY ISOPARAMETRIC SQ12
ELEMENTS WITH THOSE OF PREVIOUS INVESTIGATORS

[’Circular cylindrical shell with a circular cutout loaded in tensior]

g,,/0
Number of 11/ © [ 9.3 _4
Grid degrees of Membrane + UE/(OO h ) X 10
freedom Membrane bending (B)
4 X 4 525 3.643 4.268 4.734951
5 X 4 640 3.691 4.252 4.735373
5X6 920 3.712 4.257 4.711623
8 X 6 1415 3.666 4.223 4.724903
Finite differences 753 3.603 4.096
(ref. 40)2
Finite elements 367 3.690 4.249 4.729269
(ref. 41)2
Analytic solution 3.658 4.180
(ref. 39)2

aBased on the classical theory (with shear deformation neglected).
DStrain energy in one-quarter of the shell.
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TABLE 14.- ACCURACY OF VIBRATION FREQUENCIES OBTAINED
BY SQH ELEMENTS

with WR = 0.05, RjLy = 05; Xy, = o \[pR%/

Simply supported, two-layered, orthotropic circular cylinder
m,n E’T

Values of Xm,n for —
m,n SQH element Analytic
solution
Grid 12 | Grid 2P ()
1,2 0.5512 - - - - 0.5487 (0.5494)
1,4 ! .7932 0.6396 6356  ( .6473)
3,2 x 1.7173 - - - 1.7121  (1.7237)
3,4 L 1.4143 1.3390 1.3317 (1.3581)

4Grid 1: 2 X 2 in shell octant.

bGrid 2: 2 X 2 (2 elements in one-cighth of
the circumference).

“Numbers in parentheses refer to classical-theory
solution (with both shear deformation and rotary inertia
neglected).
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Figure 2.- Stress resultants and displacements at a curved boundary.
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Figure 3.- Characteristics of laminated graphite-epoxy plates used in present study.
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frequencies. Simply supported, nine-layered, orthotropic square plate.
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Figure 11.- Distribution of transverse displacement w and bending-moment resultant
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and 0.001,
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Figure 23.- Distribution of transverse displacement w and stress resultants N9o and
My along x9 = %. Simply supported, nine-layered, anisotropic spherical segments.
b - 0.01 and 0.001.
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Figure 24.- Cylinder with a circular cutout loaded in tension.
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Figure 25.- Grids used in present study for cylinder with a cutout.
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Figure 28.- Characteristics of two-layered graphite-epoxy cylinders.
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Figure 29.~ Grids and modes for orthotropic cylinder.
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